
News from the School of Computer Science
Issue 6.0 / Spring 2011

Closing the K-12 Gap
CMU programs, research try to reverse the

u.s. decline in computer science education

meet your

robot pal: p. 15

Also Inside:

computational thinking in practice

human genes are playthings for Eterna

recycling ‘slightly used’ supercomputers

The Link20

inputs, executes a sequence of steps and produces
outputs to satisfy a desired goal. An abstract data
type defines an abstract set of values and opera-
tions for manipulating those values, hiding the
actual representation of the values from the user
of the abstract data type. Designing efficient al-
gorithms inherently involves designing abstract
data types.

Abstraction gives us the power to scale and deal
with complexity. Applying abstraction recur-
sively allows us to build larger and larger systems,
with the base case (at least for computer science)
being bits (0s and 1s). In computing, we rou-
tinely build systems in terms of layers of abstrac-
tion, allowing us to focus on one layer at a time
and on the formal relations (e.g., “uses,” “refines”
or “implements,” “simulates”) between adjacent
layers. When we write a program in a high-
level language, we’re building on lower layers of
abstractions. We don’t worry about the details of
the underlying hardware, the operating system,
the file system or the network; furthermore, we
rely on the compiler to correctly implement the
semantics of the language. The narrow-waist
architecture of the Internet demonstrates the
effectiveness and robustness of appropriately
designed abstractions: the simple TCP/IP layer at
the middle has enabled a multitude of unforeseen
applications to proliferate at layers above, and a
multitude of unforeseen platforms, communica-
tions media and devices to proliferate at layers
below.

Computational thinking draws on both math-
ematical thinking and engineering thinking.
Unlike mathematics, however, our computing
systems are constrained by the physics of the
underlying information-processing agent and its
operating environment. And so, we must worry
about boundary conditions, failures, malicious
agents and the unpredictability of the real world.
And unlike other engineering disciplines, in
computing —thanks to software, our unique
“secret weapon”—we can build virtual worlds
that are unconstrained by physical realities. And
so, in cyberspace our creativity is limited only by
our imagination.

Computational Thinking
and Other Disciplines
Computational thinking has already influenced
the research agenda of all science and engineer-
ing disciplines. Starting decades ago with the
use of computational modeling and simulation,
through today’s use of data mining and machine
learning to analyze massive amounts of data,
computation is recognized as the third pillar of
science, along with theory and experimentation
[PITAC 2005].

The expedited sequencing of the human genome
through the “shotgun algorithm” awakened the
interest of the biology community in computa-
tional methods, not just computational artifacts
(such as computers and networks). The volume
and rate at which scientists and engineers are

>

Research Notebook

Computational Thinking—What and Why?
By Jeannette M. Wing

In an March 2006 article for the Communica-
tions of the ACM, I used the term “computational
thinking” to articulate a vision that everyone, not
just those who major in computer science, can
benefit from thinking like a computer scientist
[Wing06]. So, what is computational thinking?
Here’s a definition that Jan Cuny of the National
Science Foundation, Larry Snyder of the Univer-
sity of Washington and I use; it was inspired by an
email exchange I had with Al Aho of Columbia
University:

Computational thinking is the thought processes

involved in formulating problems and their solu-

tions so that the solutions are represented in a form

that can be effectively carried out by an informa-

tion-processing agent. [CunySnyderWing10]

Informally, computational thinking describes the
mental activity in formulating a problem to admit
a computational solution. The solution can be car-
ried out by a human or machine, or more gener-
ally, by combinations of humans and machines.

My interpretation of the words “problem” and
“solution” is broad. I mean not just mathemati-
cally well-defined problems whose solutions are
completely analyzable, e.g., a proof, an algorithm
or a program, but also real-world problems whose
solutions might be in the form of large, complex
software systems. Thus, computational think-
ing overlaps with logical thinking and systems
thinking. It includes algorithmic thinking and
parallel thinking, which in turn engage other
kinds of thought processes, such as compositional
reasoning, pattern matching, procedural thinking
and recursive thinking. Computational thinking
is used in the design and analysis of problems and
their solutions, broadly interpreted.

The Value of Abstraction
The most important and high-level thought
process in computational thinking is the abstrac-
tion process. Abstraction is used in defining
patterns, generalizing from specific instances and
parameterization. It is used to let one object stand
for many. It is used to capture essential properties
common to a set of objects while hiding irrel-
evant distinctions among them. For example, an
algorithm is an abstraction of a process that takes

computing

science

education

undergraduate

problems

abstraction
engineering

layers
first

acmnsf

new

scientists
technology

wing

university
school computation

national

thought

also
institute

disciplines

charts

engineers

students

The Link

Pipelining: SCS Dean Randy Bryant was
pondering how to make the diploma ceremony
at commencement go faster. By careful place-
ment of where individuals stood, he designed
an efficient pipeline so that upon the reading of
each graduate’s name and honors by Assistant
Dean Mark Stehlik, each person could receive
his or her diploma, then get a handshake or
hug from Mark and then get his or her picture
taken. This pipeline allowed a steady stream of
students to march across the stage (though a
pipeline stall occurred whenever the gradu-
ate’s cap would topple while getting a hug from
Mark).

Seth Goldstein, associate professor of com-
puter science, once remarked to me that most
buffet lines could benefit from computational
thinking: “Why do they always put the dressing
before the salad? The sauce before the main
dish? The silverware at the start? They need
some pipeline theory.”

Hashing: After giving a talk at a department
meeting about computational thinking, Profes-
sor Danny Sleator told me about a hashing
function his children use to store away Lego
blocks at home. According to Danny, they
hash on several different categories: rectangu-
lar thick blocks, other thick (non-rectangular)
blocks, thins (of any shape), wedgies, axles, riv-
ets and spacers, “fits on axle,” ball and socket
and “miscellaneous.” They even have rules to
classify pieces that could fit into more than

21

>>>

now collecting and producing data—through
instruments, experiments and simulations—are
demanding advances in data analytics, data storage
and retrieval, as well as data visualization. The
complexity of the multi-dimensional systems that
scientists and engineers want to model and analyze
requires new computational abstractions. These
are just two reasons that every scientific director-
ate and office at the National Science Foundation
participates in the Cyber-enabled Discovery and
Innovation, or CDI, program, an initiative started
four years ago with a fiscal year 2011 budget request
of $100 million. CDI is in a nutshell “computa-
tional thinking for science and engineering.”

Computational thinking has also begun to influ-
ence disciplines and professions beyond science
and engineering. For example, areas of active study
include algorithmic medicine, computational
archaeology, computational economics, compu-
tational finance, computation and journalism,
computational law, computational social science
and digital humanities. Data analytics is used in
training army recruits, detecting email spam and
credit card fraud, recommending and ranking the
quality of services and even personalizing coupons
at supermarket checkouts.

At Carnegie Mellon, computational thinking is
everywhere. We have degree programs, minors,
or tracks in “computational X” where X is applied
mathematics, biology, chemistry, design, econom-
ics, finance, linguistics, mechanics, neuroscience,
physics and statistical learning. We even have a
course in computational photography. We have

programs in computer music, and in computa-
tion, organizations and society. The structure of
our School of Computer Science hints at some
of the ways that computational thinking can be
brought to bear on other disciplines. The Robot-
ics Institute brings together computer science,
electrical engineering and mechanical engineer-
ing; the Language Technologies Institute, com-
puter science and linguistics; the Human-Com-
puter Interaction Institute, computer science,
design, and psychology; the Machine Learning
Department, computer science and statistics; the
Institute for Software Research, computer
science, public policy and social science. The
newest kid on the block, the Lane Center for
Computational Biology, brings together com-
puter science and biology. The Entertainment
Technology Center is a joint effort of SCS and
the School of Drama. SCS additionally offers
joint programs in algorithms, combinatorics and
optimization (computer science, mathematics
and business); computer science and fine arts;
logic and computation (computer science and
philosophy); and pure and applied logic (com-
puter science, mathematics and philosophy).

Computational Thinking
in Daily Life
Can we apply computational thinking in daily
life? Yes! These stories helpfully provided by
Computer Science Department faculty demon-
strate a few ways:

computing
disciplines

used

coursedata
charts

programs
microsoft

research

teachers just

students

mathematics

use
solutions

systems everyoneschools
cra

google

The Link

by ABI, ACM, BHEF, CRA, CSTA, Dot Diva,
Google, Globaloria, Intel, Microsoft, NCWIT,
NSF, SAS and Upsilon Pi Epsilon. In July 2010,
U.S. Rep. Jared Polis (D-CO) introduced the
Computer Science Education Act (H.R. 5929)
in an attempt to boost K-12 computer science
education efforts.

Another boost is expected to come from the
NSF’s Computing Education for the 21st Century
(CE21) program, started in September 2010
and designed to help K-12 students, as well
as first- and second-year college students, and
their teachers develop computational thinking
competencies. CE21 builds on the successes of the
two NSF programs, CISE Pathways to Revitalized
Undergraduate Computing Education (CPATH)
and Broadening Participating in Computing
(BPC). CE21 has a special emphasis on activities
that support the CS 10K Project, an initiative
launched by NSF through BPC. CS 10K aims to
catalyze a revision of high school curriculum, with
the proposed new AP course as a centerpiece,
and to prepare 10,000 teachers to teach the new
courses in 10,000 high schools by 2015.

Industry has also helped promote the vision of
computing for all. Since 2006, with help from
Google and later Microsoft, Carnegie Mellon has
held summer workshops for high school teachers
called “CS4HS.” Those workshops are designed
to deliver the message that there is more to
computer science than computer programming.
CS4HS spread in 2007 to UCLA and the Univer-
sity of Washington. By 2010, under the auspices
of Google, CS4HS had spread to 20 schools in the
United States and 14 in Europe, the Middle East
and Africa. Also at Carnegie Mellon, Microsoft
Research funds the Center for Computational
Thinking (www.cs.cmu.edu/~CompThink/),
which supports both research and educational
outreach projects.

Computational thinking has also spread interna-
tionally. In August 2010, the Royal Society—the
U.K.’s equivalent of the U.S.’s National Acad-
emy of Sciences—announced that it is leading
an 18-month project to look “at the way that
computing is taught in schools, with support from
24 organizations from across the computing com-
munity including learned societies, professional
bodies, universities and industry.” (See www.
royalsociety.org/education-policy/projects/.) One
organization that has already taken up the chal-
lenge in the U.K. is called Computing At School,
a coalition run by the British Computing Society
and supported by Microsoft Research and other
industry partners.

one category. “Even though this is pretty crude,
it saves about a factor of 10 when looking for a
piece,” Danny says. Professor Avrim Blum over-
heard my conversation with Danny and chimed in
“At our home, we use a different hash function.”

Sorting: The following story is taken verbatim
from an email sent by Roger Dannenberg, associ-
ate research professor of computer science and
professional trumpeter. “I showed up to a big band
gig, and the band leader passed out books with
maybe 200 unordered charts and a set list with
about 40 titles we were supposed to get out and
place in order, ready to play. Everyone else started
searching through the stack, pulling out charts
one-at-a-time. I decided to sort the 200 charts al-
phabetically O(N log(N)) and then pull the charts
O(M log(N)). I was still sorting when other band
members were halfway through their charts, and
I started to get some funny looks, but in the end,
I finished first. That’s computational thinking.”

Benefits of
Computational Thinking
Computational thinking enables you to bend
computation to your needs. It is becoming the
new literacy of the 21st century. Why should
everyone learn a little computational thinking?
Cuny, Snyder and I advocate these benefits
[CunySnyderWing10]:

Computational thinking for everyone means
being able to:

•	 Understand which aspects of a problem are
amenable to computation,

•	 Evaluate the match between computational
tools and techniques and a problem,

•	 Understand the limitations and power of
computational tools and techniques,

•	 Apply or adapt a computational tool or
technique to a new use,

•	 Recognize an opportunity to use computation
in a new way, and

•	 Apply computational strategies such divide
and conquer in any domain.

Computational thinking for scientists, engineers
and other professionals further means being able to:

•	 Apply new computational methods to their
problems,

•	 Reformulate problems to be amenable to
computational strategies,

•	 Discover new science through analysis of
large data,

•	 Ask new questions that were not thought
of or dared to ask because of scale, but which
are easily addressed computationally, and

•	 Explain problems and solutions in
computational terms.

Computational Thinking
in Education
Campuses throughout the United States and
abroad are revisiting their undergraduate cur-
riculum in computer science. Many are changing
their first course in computer science to cover
fundamental principles and concepts, not just
programming. For example, at Carnegie Mellon
we recently revised our undergraduate first-year
courses to promote computational thinking for
non-majors [Link10].

Moreover, the interest and excitement surround-
ing computational thinking has grown beyond
undergraduate education to additional recent
projects, many focused on incorporating compu-
tational thinking into kindergarten through 12th
grade education. Sponsors include professional or-
ganizations, government, academia and industry.

The College Board, with support from NSF, is
designing a new Advanced Placement (AP)
course that covers the fundamental concepts
of computing and computational thinking
(see the website www.csprinciples.org). Five
universities are piloting versions of this course
this year: University of North Carolina at
Charlotte, University of California at Berkeley,
Metropolitan State College of Denver, University
of California at San Diego and University of
Washington. The plan is for more schools—high
schools, community colleges and universities—
to participate next year.

Computer science is also getting attention from
elected officials. In May 2009, computer science
thought leaders held an event on Capitol Hill to
call on policymakers to put the “C” in STEM, that
is, to make sure that computer science is included
in all federally funded educational programs that
focus on science, technology, engineering and
mathematics (STEM) fields. The event was spon-
sored by ACM, CRA, CSTA, IEEE, Microsoft,
NCWIT, NSF and SWE. The U.S. House of Rep-
resentatives has now designated the first week of
December as Computer Science Education Week
(www.csedweek.org); the event is sponsored

Research Notebook

22

The Link 23

Resources Abound
The growing worldwide focus on computational
thinking means that resources are becoming
available for educators, parents, students and
everyone else interested in the topic.

In October 2010, Google launched the Exploring
Computational Thinking website (www.google.
com/edu/computational-thinking), which has a
wealth of links to further web resources, includ-
ing lesson plans for K-12 teachers in science and
mathematics.

Computer Science Unplugged (www.csun-
plugged.org), created by Tim Bell, Mike Fellows
and Ian Witten, teaches computer science with-
out the use of a computer. It is especially appropri-
ate for elementary and middle school children.
Several dozen people working in many countries,
including New Zealand, Sweden, Australia,
China, Korea, Taiwan and Canada, as well as in
the United States, contribute to this extremely
popular website.

The National Academies’ Computer Science
and Telecommunications Board held a series
of workshops on “Computational Thinking for
Everyone” with a focus on identifying the fun-
damental concepts of computer science that can
be taught to K-12 students. The first workshop
report [NRC10] provides multiple perspectives on
computational thinking.

Additionally, panels and discussions on compu-
tational thinking have been plentiful at venues
such as the annual ACM Special Interest Group
on Computer Science Education (SIGCSE)
symposium and the ACM Educational Council.
The education committee of the CRA presented
a white paper [CRA-E10] at the July 2010 CRA
Snowbird conference, which includes recom-
mendations for computational thinking courses
for non-majors. CSTA produced and distributes
“Computational Thinking Resource Set: A
Problem-Solving Tool for Every Classroom.”
It’s available for download at the CSTA’s website
(www.csta.acm.org).

Final Remarks—and a Challenge
Computational thinking is not just or all about
computer science. The educational benefits of
being able to think computationally—starting
with the use of abstractions—enhance and
reinforce intellectual skills, and thus can be
transferred to any domain.

Computer scientists already know the value of
thinking abstractly, thinking at multiple levels of
abstraction, abstracting to manage complexity,
abstracting to scale up, etc. Our immediate task
ahead is to better explain to non-computer scien-
tists what we mean by computational thinking and
the benefits of being able to think computationally.
Please join me in helping to spread the word!

Jeannette Wing is head of the Computer Science Depart-
ment at Carnegie Mellon University and the President’s
Professor of Computer Science. She earned her bach-
elor’s, master’s and doctoral degrees at the Massachu-
setts Institute of Technology and has been a member of
the Carnegie Mellon faculty since 1985.

From 2007 to 2010, Wing served as assistant director for
the Computer and Information Science and Engineering
Directorate of the National Science Foundation. She is a
fellow of the American Academy of Arts and Sciences,
the American Association for the Advancement of Sci-
ence, the Association for Computing Machinery and the
Institute of Electrical and Electronic Engineers.

Bibliography and
Further Reading
[CRA-E10] Computer Research Association,
“Creating Environments for Computational Re-
searcher Education,” August 9, 2010
www.cra.org/uploads/documents/resources/rissues/
CRA-E-Researcher-Education.pdf

[CunySnyderWing10] Jan Cuny, Larry Snyder
and Jeannette M. Wing, “Demystifying
Computational Thinking for Non-Computer
Scientists,” work in progress, 2010

[NRC10] “Report of a Workshop on the Scope
and Nature of Computational Thinking,”
National Research Council, 2010 (www8.
nationalacademies.org/cp/projectview.
aspx?key=48969)

[Link10] Randal E. Bryant, Klaus Sutner and
Mark Stehlik, “Introductory Computer Science
Education: A Dean’s Perspective,” The Link,
Fall 2010

[PITAC05] President’s Information Technology
Advisory Council, “Computational Science:
Ensuring America’s Competitiveness,” Report
to the President, June 2005

[Wing06] Jeannette M. Wing, “Computational
Thinking,” Communications of the ACM,
Vol. 49, No. 3, March 2006, pp. 33–35

Acronyms of Organizations:

ABI: Anita Borg Institute for Women
and Technology

ACM: Association for Computing
Machinery

BHEF: Business-Higher Education
Forum

CISE: Computer and Information
Science and Engineering

CRA: Computing Research
Association

CRA-E: Computing Research
Association-Education

CSTA: Computer Science Teachers
Association

CSTB: Computer Science and
Telecommunications Board

IEEE: Institute for Electrical and
Electronic Engineers

NCWIT: National Center for Women
and Information Technology

NSF: National Science Foundation

SIGCSE: ACM Special Interest Group
on Computer Science Education

SWE: Society for Women Engineers

Acronyms of NSF Programs:

BPC: Broadening Participating
in Computing

CDI: Cyber-enabled Discovery and
Innovation

CE21: Computing Education for the
21st Century

CPATH: CISE Pathways to Revitalized
Undergraduate Computing Education

